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What is epidemiology?

Some textbook definitions:

m The study of the distribution and determinants of disease frequency in
man (MacMahon and Pugh 1970)

m The discipline on principles of occurrence research in medicine
(Miettinen 1985)

m The study of the distribution and determinants of health related
states and events in specified populations, . . . (Porta (ed.) Dictionary
of Epidemiology, 2014)

v
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Epidemiology

What? Who? When? Where?

What are the How many people Over what Where do the
health problems are affected? period of time? affected people
of the live, work or
community? spend leisure
What are the time?

attributes of

affected persons?

What are the
attributes of
these illnesses?

Why? How?

What are the By what mechanism
causal agents? do they operate?

What factors
affect outcome?

Epidemiologic approaches
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Epidemiology

Epidemiology

Classical Epidemiology: focuses on the triad of person, place and time.

GIS

Modern Epidemiology increasingly incorporates the spatial perspective
(place) into the research designs and models using Geographic
Information System methods:

m Geocoding.

m Distance estimation.

m Record linkage and data integration (Disease Mapping).
m Spatial and spatio-temporal clustering.

m Small area estimation and Bayesian applications to disease mapping.
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Spatial Epidemiology

Spatial epldemlology
"ﬁ',_,hl

& Dr. John Snow’s Map

of Cholera Deaths in l
the SOHO District of = -
London, 1854 — 5~
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Spatial Epidemiology
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Spatial Epidemiology

John Snow identified the spatial aggregation of Cholera cases in 1857 in
London. J
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Epidemiology

& To study disease, we need measures of its
occurrence.

 Some measures of disease occurrence
@ Counts

@ Prevalence

Influenza Surveilance Regions COUNTING SHEEP

@ Incidence
@ Mortality

Measures of disease occurrence
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Introduction

Types of spatial analysis in epidemiology

m Disease mapping (Health services research focused: social epi)

m Geographical correlation (Social and Enviromental Health Epi)
m Risk assessement in relation to point or line resources (Infectious Epi)

m Cluster detection and disease clustering (Infectious Epi)

Heart Disease Death Rates, 2014-2016
Adults, Ages 65 +, by County

29 de noviembre de 2018



Introduction: Spatial Epidemiology Definition

Definitions
m English D. 1992: "The description of spatial patterns of disease
incidence and mortality”.

m Lawson, AB. 2003: "Spatial Epidemiology concerns the analysis of the
spatial /geographical distribution of the incidende of disease”

BWILEY

Nslgﬁztl‘gﬂl Spatial epidemiology is the description
T atlal and analysis of geographically indexed
health data with respect to demographic,
enviromental, behavioral, socioeconomic,
genetic, and infectious risk factors.

Andrew B. Lawson
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Introduction: Spatial Epi and Health Disparities

Spatial Epidemiology and Health Disparities Examples

m Physical and social environments give rise to HEALTH
DISPARITIES.

m Longer distances to reach mammography facilities (delay in diagnosis)
[Nattinger AB. 2001].

m Pedestrian friendly enviroments and obesity. [Gordon-Larsen, 2006].

m Residents in major traffic corridors and cardiovascular disease.
[McEntee JC. 2008].
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Introduction: Problems

Problems in Spatial Epi j DAt Nl .

m Scale (i.e., Autonomous regions,
Province, Municipe, Hospital,
School, Neighborhood, ZIP e
code, census tract). F‘%-

m Changes of bounderies.

m Unssucessfull geocoding rates
(changes in representativity) or
even errors in geocoding.

m Missalignement.
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Introduction: Problems

Problems in Spatial Epi

HOS.USED LORD N 01 ST

m Scale (i.e., Autonomous regions,
Province, Municipe, Hospital, A v
School, Neighborhood, ZIP ' . , o
code, census tract). “‘ bl g

m Changes of bounderies.

m Unssucessfull geocoding rates
(changes in representativity) or
even errors in geocoding

m Missalignement.
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Introduction: Study Designs

Cross-sectional Ecological studies (mostly descriptives)

m The unit of anlysis is grouped by political /administrative units (e.g.
nation, state, autonomous region, ZIP code, census tract) health
facility, school, or other organization unit.

m Spatial dependence (clustering) must be accounted for using
smoothing techniques, spatial regression or multi-level modeling.

m Ecological Falacy

m Generalization of hypothesis
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Introduction: Study Designs

Case-control, croossover and Cohort studies of enviromental risk
factors

m Spatial dependence (clustering)

m GIS can help to estimate measures of access (e.g. distance to facility)
or other local estimates derived from spatial surfaces (i.e., deprivation
index).

m Geocoding of adresses linked to Census level socio-demographic and
enviromental variables (e.g. air pollution, water quality).
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Introduction: Methodologies (Geocoding)

Geocoding evaluation

1. Match rate: percentage of records being geocoded.

2. Match score: how well the standardized address matches the street
database.

3. Match type: kind of precission i.e., geocoding at the street level or
Zip Code.

4. Protect privacy of individuals: Geomasking.
5. Quality has a price: ESRI and ArcGIS Pro.

6. Example Lian et al. found travel time and facility density were poorly
correlated with odds of late-stage breast cancer.

v
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Introduction: Methodologies (Distance)

Why do we use ditances?

To evaluate the impact of long distances on the provision and utilization
of health services.

Distance estimation

1. Travel distance: Euclidean or network based (impedance must be
incorporated).

2. Trevel cost.
3. Impedance: en route conditions (congestion).

4. Quality has a price: ArcGIS Pro can be used to calculate distance
and travel time using ESRI's cloud-based road network data.

5. Example Lian et al. found travel time and facility density were poorly
correlated with odds of late-stage breast cancer.

v
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Introduction: Methodologies (Clustering)

Evaluating clustering aggregated cases into spatial units of individual
disease cases is typically implemented using a count statistic to account
for spatial-autocorrelation.

Moran's |

1. Moran’s |: tells us whether nearby units tend to exhibit similar rates

Ranges from -1 to 41, whith a value of -1 denoting that units whit
low rates are located near other units with high rates, while a Moran's
| value of +1 indicates a concentration of spatial units exhibiting
similar rates.

2. Kulldorff’s spatial scan statistic: identifies the most likely disease
clusters maximizing the likelihood that disease cases are located
within a set of concentric circles that are moved across the study area.
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Introduction: Methodologies (Diseae risk estimation)

Small Areas Estimation

Small size = unstable estimates = sporious associations

Small area unstability

SE(SMR) = sqrt(1/cases)
Small number of cases leads to a larger SE (unstable estimates)
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Introduction: Methodologies (Diseae risk estimation)

Approaches to deal with small areas

1. Multi-level modelling: using GLMM to account for the random
are-level effects not explained by the covariates alone. We can fit
these models under a Frequentist (Empirical bayes estimation) or
Hierarchical Bayesian approach (Posterior probabilities) (Clayton and
kaldor, 1987).

2. Conditional Autoregressive models: in addition to unexplained
variability (overdispersion) we can also use the spatial structure of the
data to improve the small area estimates.

BYM Besag-York-Moille model is the most commonly used. In this
model, the spatially structured component is modelled according to a
certain adjacency structure given by a neighborhood matrix that
specificies two areas are neighbours if they have a common boundary. )
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CONTENT: 2

Cholera Epidemic in Harare

Let's review critically the study | will be presenting regarding the Spatial
Epidemiology Analysis of the Cholera Epidemy in Harare, Zimbabwe.
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CONTENT 3: Disease mapping

Disease mapping

m Provide risk estimates in the region of study
m Usually data collected by Health Authorities
m Crude measures of mortality and morbidity (incidence) can be mapped

m However, standardized measures SIR and SMR are most commonly
mapped.

Heart Disease Death Rates, 2014-2016
Adults, Ages 65 +, by County
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CRUDE Measures of ocurrence and mortality

CRUDE Incidence and Mortality Rates

Incidence measures

> Incidence proportion () over a fixed risk period.

__number of incident (new) cases during period
"~ size of pop'n at risk at start of the period

Also called cumulative incidence (even “risk”; e.g. 1S).
NB. “Cumulative incidence”" has other meanings, too.
» Indidence rate (I) over a defined observation period:

~ number of incident (new) cases during period
~ sum of follow-up times of pop'n at risk

Also called incidence density.

v
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Standardization of Rates

Standardization

» Incidence of most cancers (and many other diseases)
increases strongly by age in all populations.

= Most of the caseload comes from older age groups.

total no. of new cases
total person-years

e numerator = sum of age-specific numbers of cases,
e denominator = sum of age-specific person-years.

» Crude incidence rate —

» This is generally a poor summary measure.

» Comparisons of crude incidences between populations can
be very misleading, when the age structures differ.

» Adjustment or standardization for age needed!
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Standardization of Rates

Cali Birmingham

Male Incid. Male Incid.

Male  Popu- Rate  Male Popu- Rate

cases lation (/10%y) cases lation  (/10%)
Age 1982 1984 1982 1983 1985 1983 Rate
o) 86 (x10%) 86 -86 (x10%)) 86 ratio
0-44 39 524.2 1.5 79 16836 1.2 1.25

45-64 266 76.3 69.7 1037 581.5 446 1.56
65+ 315 22.4 281.3 2352 201.1 202.0 1.39

Total 620 622.9 19.9 3468 2556.2 339 059

» In each age group Cali has a higher incidence but the
crude incidence is higher in Birmingham.
> Is there a paradox?
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Standardization of Rates

DIRECT Standardization

% of male population

Age Cali B’'ham Finland World
(years) 1984 1985 2011 Stand.
0-44 84 66 56 74
45-64 12 23 29 19
65+ 4 11 15 7

All ages 100 100 100 100

The fraction of old men greater in Birmingham than in Cali.
= Crude rates are confounded by age.
= Any summary rate must be adjusted for age.
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Standardization of Rates

DIRECT Standardization

Age-standardised incidence rate (ASR):

K
ASR = Zweightk X ratey, / sum of weights
k=1
= Weighted average of age-specific rates over the
age-groups k=1,..., K.

» Weights describe the age distribution of some
standard population.

» Standard population can be real (e.g. one of the
populations under comparison, or their average)
or fictitious (e.g. World Standard Population, WSP)

» Choice of standard population always more or less
arbitrary.
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Standardization of Rates

DIREC dardization

Age group (years) African World European
0-4 10 000 12 000 8 000
5-9 10 000 10 000 7 000
10-14 10 000 9 000 7 000
15-19 10 000 9 000 7 000
20-24 10 000 8 000 7 000
25-29 10 000 8 000 7 000
30-34 10 000 6 000 7 000
35-39 10 000 6 000 7 000
40-44 5 000 6 000 7 000
45-49 5 000 6 000 7 000
50-54 3 000 5 000 7 000
55-59 2 000 4 000 6 000
60-64 2 000 4 000 5 000
65-69 1 000 3 000 4 000
70-74 1 000 2 000 3 000
75-79 500 1 000 2 000
80-84 300 500 1 000
85+ 200 500 1 000
Total 100 000 100 000 100 000
v
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Standardization of Rates

DIRECT Standardizatio

Age-standardized rates by the World Standard Population:

Cali Birmingham
Age Rate®  Weight Rate®  Weight
0-44 1.5x 0.74= 1.11 12x 0.74= 0.89
45-64 69.7 X 0.19=13.24 44.6 x 0.19= 8.47
654 281.3 x 0.07=19.69 202.0 x 0.07=14.14
Age-standardised rate 34.04 23.50

» ASR in Cali higher — coherent with the age-specific rates.
» Summary rate ratio estimate: standardized rate ratio
SRR = 34.0/23.5 = 1.44.

» Known as comparative mortality figure (CMF) when
the outcome is death (from cause C or all causes).
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Standardization of Rates

INDIRECT Standardization

» Compare rates in a study cohort with a standard set of
age—specific rates from the reference population.

» Reference rates normally based on large numbers of cases,
so they are assumed to be “"known” without error.

» Calculate expected number of cases, F, if the standard
age-specific rates had applied in our study cohort.

» Compare this with the observed number of cases, D, by
the standardized incidence ratio SIR
(or st'zed mortality ratio SMR with death as outcome)

SIR =D/E,  SE(log[SIR]) = 1/vD
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Standardization of Rates

INDIRECT Standardization

» A cohort of 974 women treated with hormone
(replacement) therapy were followed up.

» D = 15 incident cases of breast cancer were observed.

» Person-years (V') and reference rates (\*, per 100000 y)
by age group (a) were:

Age Y X E
40-44 975 113 1.10
45-49 1079 162 1.75
50-54 2161 151 3.26
b5-59 2793 183 5.11
60-64 3096 179 554

> 16.77
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Standardization of Rates

INDIRECT Standardization

» “Expected” cases at ages 40-44:

113
100000

975 x =1.10

» Total “expected” cases is &/ = 16.77

v

SIR =15/16.77 = 0.89.
» Error-factor: exp(1.96 x /1/15) = 1.66

95% confidence interval is:

v

0.89 X 1.66 = (0.54,1.48)
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Disease mapping

Once you have estimated your SIR or SMR, you would like to it in your
favority GIS software (usually merging it, using your ID, into the .dbf
database) and map it.

HOSTUSED KD N E5C SPTE

Please, be honest and consequent (just present strongt effects and relevant patterns)
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Disease Mapping

Conclusions

m In general, the use of map displays should be minimised and only used
when ancillary statistical information is available.

m Any map which may be used for interpretation should be as simple as
possible and report statistical information closely without undue extra
processing.

m For case event data, the simplest form of representation of relative
risk is a contoured risk surface.

m To reduce the potential bias in interpretation of such surfaces, it is
probably better to portray the surface as a probability (p-value)
surface which displays the associated variability directly, rather than
presenting the estimated relative risk surface itself.

m Probability maps may account for the population size better than the
SMR, which may show high extreme values in low populated areas

(consider overdispersion with spatial dependence).
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Disease Mapping

Conclusions

m For aggregated count data, users may prefer coloured maps there is
some justification for the use of greyscale maps in that tonal quality
can bias interpretation.

m The use of class boundaries defined by percentiles of the observed
distribution or other cut points which produce internally standardised
relative schemes should be avoided in favour of reporting of
grouped rates.

m In general, the use of maps of relative risk should be limited to
an aid to presentation of statistical results rather than a basic
inferential tool.
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Computing SIR and SMR

PRACTICAL#1 using Stata and R

Measures of Disease Ocurrence (SIR), Mortality (SMR) and Risk in Spatial
Epidemiology.
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CONTENT: 4 GLM and Poisson Regression

Modeling counts
Modeling counts over time (RATES), Poisson Regression and GLM
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Poisson distribution

Poisson distribution

m 0 is called the canonical
or natural parameter.

m The associated function
(log for Poisson) is
called the canonical link
function.

m The parameter ¢ is
known as the scale or
dispersion parameter (¢
=1).

Miguel Angel Luque Fernandez

The Poisson distribution.

!Ie—H
fly) =Pr(Y =y) :"7, y=101,2,...

In{f(y)} = yIn(p) — g — In(y!)

6=In(u), 6=1, b(6) =p, c{y,6) = In(y)
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Poisson process to model RATES

The Poisson process

The Poisson process is a model for the occurrence of events in
continuous time in which the following assumptions are made.

e Events occur singly.
e The rate of occurrence of events remains constant.

e The incidence of future events is independent of the past.

Events in a Poisson process can be visualised as occurring along a line
representing time (or distance) as shown in Figure 6.

t (or z)
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Poisson Process

The Poisson process: two main results

Suppose that events occur at random at rate A per unit time in such
a way that their occurrence may be modelled as a Poisson process.

e The random variable X, which represents the number of events
that occur during a time interval of length ¢, has a Poisson
distribution with parameter \¢:

X ~ Poisson(At). (6)

o The waiting time T between successive events has an exponential
distribution with parameter A:

T ~ M(A). (7)
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Poisson Assumption

Equalities between means and dispersion parameters
For a Poisson(\) distribution,

mean = variance = A;
for an exponential distribution with parameter A,

mean = standard deviation = 1/A.
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Generalized Linear Models

The family of generalised linear models (GLMs) is a larger class of models
(derived from the exponential family) which enables us to develop and fit
models for a much wider range of outcome types (continuous, binary and
count outcomes) (Wedderburn, 1972) (MacCullagh and Nelder, 1989).
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M: Poisson modelling

A GLM has three components.

1. Response Distribution: The response variables ¥;,i = 1,...,n are assumed to be
independent, arising from an exponential family distribution, with E(Y;) = p;.

2. Linear Predictor: The explanatory variables (1, ...,x,) enter the model in a lin-
ear combination with unknown parameters: for the ith subject we have the linear

predictor:
M = o+ i + -+ BpTip.

3. Link Function: The link function relates the linear predictor #; to the mean p;:

g(ps) = mi-
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GLM: Poisson modelling

Recall that if Y ~ Po(y) then

et

y!

P(Y =y)

The Poisson GLM assumes that Y follows a Poisson distribution conditional on covariates
2y, .., 2,. The canonical link function is 6 = log(p). Thus the Poisson GLM assumes that
Y; ~ Po(u;) where

log(i:) = fo + Pria + .. + Byt

The ratio of the means for one subject with covariate vector x; = (211, .., #1,) and another
with covariate vector xg = (Zo1, .., To,) is then equal to

exp(fBo + frx1y + ... + Bptyp)

<P (Bo + Brzor o+ Boroy) = exp(Bi(z11 — To1) + ... + Bp(@1p, — T0p))

The coefficients S, corresponds to the log of the mean of Y for a subject with all covariates
equal to zero. The coefficient 3, represents the increase in the log of the mean for a one
unit increase in the covariate z;. The exponentiated coefficients are usually referred to as
rate-ratios, since this is the interpretation in the common situation when the outcome Y
arises as the number of events over a particular period.

Poisson GLMs can be fitted in Stata either using the glm command, or (more easily) with
the poisson command.
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GLM: Poisson Process (rates) modelling

Consider events which occur independently in periods of time t; with rates A\;. Then
the r.v.’s Y; which represent the numbers of events in periods of time ¢; have Poisson
distributions, with means ji; = Ait;.

The Poisson distribution is a member of the exponential family, so the mean u; can be
modeled through a generalized linear model using a linear predictor of p explanatory
variables x;1, ..., T;, via a suitable link function.

The log function is nearly always used with the Poisson distribution:
e it maps positive values of . to the whole real line for the linear predictor;

e parameters are easily interpretable in terms of multiplicative effects on the scale
of the rates;

e it is the natural (or canonical) parameterization for the Poisson distribution.

The model we are interested in is one for the rates A;, and takes the form:
log(Ai) = fo + Bz + ... + Bpip.

However, for the generalized linear model we need to express the linear predictor in terms
of the mean p; = \it;. Using A; = p,/t; we have

log(p;) —log(t;) = Bo + Prza + - . + Bpip,
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Poisson Assumption: overdispersion

Overdispersion

Motivation
The Poisson assumption may be too strict in some cases
e It imposes E[O;] = Var[Oj]
e Usually, E[O;] < Var[Oj]
@ E; and 0); may have not been estimated with accuracy: important
covariates missing, spatial structure ignored, etc.

o Overdispersion may appear if the wrong model is used

Solutions
@ Propose a better model
@ Incorporate significant covariates

o Use random effects to account for spatial and non-spatial patterns
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Poisson Assumption: overdispersion

Luque-Femandez etal. BMC Medical Research Methodalogy (2016) 16:129 :
DOI 10.1186/512674-016-02342 BMC MEd|CaeLRgS%?(;g;’

Adjusting for overdispersion in piecewise L
exponential regression models to estimate
excess mortality rate in population-based
research

Miguel Angel Luque-Fernandez”, Aurélien Belot, Manuela Quaresma, Camille Maringe, Michel P. Coleman
and Bernard Rachet

Abstract

Background: In population-based cancer research, piecewise exponential regression models are used to derive
adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework.
However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x;
are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance
exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for
overdispersion.

Methods: We used a regression-based score test for overdispersion under the relative survival framework and
proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors
estimation, negative binomial regression and flexible piecewise modelling.

Results: All piecewise exponential regression models showed the presence of significant inherent overdispersion
(pvalue <0.001). However, the flexible piecewise exponential model showed the smallest overdispersion parameter
(3.2 versus 21.3) for non-flexible piecewise exponential models.

Conclusion: We showed that there were no major differences between methods. However, using a flexible
piecewise regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it
deals with both, overdispersion due to model misspecification and true or inherent overdispersion.

Keywords: Epidemiclogic methods, Regression analysis, Survival analysis, Proportional hazard models, Cancer
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PRACTICAL#2:

Practicals using R and Stata

Generalized linear Model: Poisson family and link log, Risk Ratios and
Overdispersion.
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CONTENT: 5 GLMM and EB estimation

Generalized Linear Mixed Effect Models and Empiral Bayes Estimation \

Miguel Angel Luque Fernandez ibs. GRANADA 29 de noviembre de 2018 50 / 87



Levels: Hierarchical structure

Multi-level Models — Main Idea

+ Biological, psychological and social processes that
influence health occur at many levels:

— Organ™~—; Health
— Person 'y Outcome
— Family

— Neighborhood

— City

— Society :
* An analysis of risk factors should consider:

— Each of these levels

— Their interactions
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Notation: /\x%?

Person: ijkl N Population
Outcome: Y, )]”\\
Predictors: X,
State: /=1,...,L \ ’1»
Neighborhood: o g oDz
k=1,...,1, M Mﬁ

. 300715 X3 77/)
Person: i=1,....[; k@

Miguel Angel Luque Fernandez ibs. GRANADA 29 de noviembre de 2018 52 / 87



Several names but same concept

What's in a name?
Multi-level model

Random effects model

— Random intercept model

— Random coefficient model

* Mixed model

Hierarchical model

Meta-analysis (special case)
Many names for similar models, analyses, and goals.
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Motivation Random effect models

motivation for multilevel models

- standard regression models are mis-
specified for clustered data:

Y. = Bo+ Bix;+ & €~ N(0,0°) Lid

* hierarchical models outperform
unbiased models (i.e., lower mean
squared error)

» ["shrinkage”]
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Random Effect Models visualization

multilevel models: random and fixed

+  random effects models

i random intercept
1. random intercept ranclom intercer

specific mean
realized from a
random
distribution

2. random slope

3. random slope and random slope

o models: exposure
random intercept effect realized
from a random
distribution
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Random Effect Models visualization

Residuals in standard regression

+ Standard regression model:

yi=a+ b+ ¢ ——Cesidual
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Random Effect Models visualization

Random-effects (multilevel) models

* Random effects regression model:

residuals
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Random Effect Models visualization

Random-effects (multilevel) models

* Random effects regression model:

Level 2
residuals
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Random Effect Models visualization

Random-effects (multilevel) models

* Level 1 (observation in cluster) indexed by j
» Level 2 (cluster) indexed by i
* Multilevel model:

yij=a+bxij+u,-+ €

*Level 2 residual u; represents the difference
between the regression line and the cluster
mean

‘Level 1 residuals e; are assumed to be
statistically independent within clusters (once
cluster residuals are included in the model)
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Random Effect Models visualization

Random-effects (multilevel) models

* The u;and e; are not individually estimated

* A distribution is assumed for each, and the
variance of that distribution is estimated

* Common assumed distributions are normal,
gamma, log-normal

* e; ~N(0, c,)
* u; ~N(, o)
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Random Effect Models visualization

Output from standard model

yi=a+1)xi+ei

If ’ ’ r \

L2 AN
Estimated Estimate of
regression residual variation
coefficients o)
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Random Effect Models visualization

Output from multilevel model

yij=a+bxl.j+ui+e,-j
# -

v v
-
- -

o .l A
Estimated Estimate of Estimate of
regression between- residual variation
coefficients cluster o2 0.

variation

Both u; and e; are usually assumed
to be normally distributed
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A simple frequentist Random Effect Model

y;=0+b;+¢;

Inner-London School data: i=1,., n;, j=L.,J
¥, = GCSE score for student in school j (age 16) e, ~N(©O,0 )
b
X; = LRT score for student i in school j(age 11) The by's represent the
b.~N (0, 72 ) school-specific deviation
J from the overall mean!
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Types of Shrinkage estimation

Shrinkage estimation

« Goal: estimate the school-specific average score 6,
« Two simple approaches:

— A) No shrinkage 7, =HLZ Yij

Uy
. >y,
—B) Total shrinkage _ 4o Inverse variance
Y =77, weighted average
_J
2o

Miguel Angel Luque Fernandez ibs. GRANADA 29 de noviembre de 2018 64 / 87



Empirical Bayes Estimation

Shrinkage Estimation: Approach C

We are not forced to choose between A and B

« An alternative is to use a weighted
combination between A and B

A = _ = Empirical
9}' - /lf' Vit (1 ﬂi)y Bayes estimate

TZ

L2
ﬂj ,O'j—O'/nj

72+0§
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Types of Shrinkage estimation: differences

Shrinkage estimation

» Approach C reduces to

approach A (no pooling)

when the shrinkage factor is

equal to 1, that is, when the " B

variance between groups is 6, =4y, +(1-4)y

very large 2
+ Approach C reduces to 4 = 5,0 =0 I

approach B, (complete T +o;

pooling) when the

shrinkage factor is equal to

0, that is, when the variance

between group is close to

be zero
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Linear Mixed Effect Model in Stata

Results

xtmixed gcse || school: , mle
Wald chiZ (0) =
Log likelihood = -T7052.6772 Prob » chiz2 =
gcse | Coef. Std. Err. -4 P>lz| [95% Conf. Intervall]
_cons IQS.TZSEQLIJ.OBZG 66.40 0.000 71.54767 75.8%0007
)
Random—effects Parameters | Estimate S5td. Err. [95% Conf. Interwval]
schoolid: Identity |
sd(_cons) | 8.674262 . 8564037 7.148156 10.52619
2 .
Ca_. sd (Residual) | 13.81211 .2402588 13.34915 14.29113

LR test wvs. linear regression: chibar2(01)

Miguel Angel Luque Fernandez

422.94 Prob >= chibar2

0.0000
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Frequentist vs Bayesian

« Qverallmean

— Inverse-variance weighted average

« Infixed effects approach, the weight is inverse of variance of cluster
specific mean

+ In Empirical Bayes approach, the weight is inverse of variance of
cluster specific mean plus the random effect variance!

— Ifthe data were balanced, this would be sample mean (i.e. same
weight for each cluster)

« Empirical Bayes school-specific means (predicted means)
— Weighted average of overall mean and school-specific mean
— “Borrow Strength” from other observations
— “Shrink Estimates” towards overall averages (in general)
— More precise (i.e. smaller confidence intervals)
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How does the estimation work?
y; =0+b,; +€,
g; ~N(0,07)
by; ~ N(0,77)

Estimate o, 7* and 6.

Then get estimates of b, ;
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Empirical Bayes Estimation

0=y +(1-1)0

)
T
A =

J A
7? +0'f

var(8,) = A var(y,) +(1- 1,)* var()
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Visual interpretation

Little to no shrinkage for schools with Large shrinkage for schools with small

Results large sample sizes sample sizes
00
90 T _ I 1
: WF iy
En L L { : a ‘ﬁ; {
i oo " Also note the gain in precision (shorter Cl)!
3

Sohool School
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Random-effects Poisson Regression

REPR

m An important limitation of SMR is that estimates for small areas are
very imprecise.

m This problem can be addressed by using random-intercept Poisson
models in conjunction with the Emprical Bayes Estimation (EB) or
Prediciton.

m The resulting SMRs are shrunken toward the overall SMR, thereby
borrowing strenght from others areas.

m Full likelihood estimation is possible with gamma-distributed
random effects a.k.a negative binomial regression (NBR).

m REPR is the only non-normal context where GEE and random effects
models are estimating the same thing.
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Random-effects Poisson Regression

Model Specification 1:

K
In(1j) = Ingj + fo + > _ BmX; + Uj
k=1

Model Specification 2:
K
In(i;) — Ingj = Bo + Y BumXj + U;
k=1

Model Specification 3

Ine; 0 kzlmJ g

Here U; ~ N(0,72) is a random intercept representing unobserved heterogeneity
between areas and In(e;) is the log of the expected number the outcome cases in
area j based on its age distribution and it is introduced in the model as an offset, a
covariate with regression coefficient set to 1. The purpose of the offset is to ensure
that 1 and U; can be interpreted as a model-based region-specific log SMR. This
interpretation becomes clear by substracting the offset from both sides of the
equation.
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Empirical Bayes Estimation interpretation

. use lips, clear
. generate lme = ln(e)
. gllamm o x, i(county) offset(lne) f(poiss) adapt

Adaptive quadrature has converged, running Newton-Raphson
Iteration O: log likelihood = -171.72255
Iteration 1: log likelihood = -171.72255

number of level 1 units = 56
number of level 2 units = 56

Condition Number = 18.627351
gllamm model

log likelihood = -171.72255

o Coef.  Std. Err. z P>|z| [96% Conf. Intervall

x .0682842  .0140245 4.87  0.000 0407967 .0957718

_cons -.40002356  .1B71707 -3.12  0.002 -.7980723  -.1819746
1ne (offset)

Variances and covariances of random effects

##rlevel 2 (county)

var(1): .34836038 (.09804164)

Interpretation: The log of the expected number of lip cancer cases in a county increases by 0.07 for every unit increase in x. The corresponding
incidence rate ratio is 1.07 (= exp(0.068)) corresponding to a 7 % increase in the incidence rate per unit increasé in x.
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Empirical Bayes estimation in R

Empirical Bayes Smoothin

The method of moments approach is implemented in spdep, while the
maximum likelihood approach is implemented in DCluster:

v

library(spdep)

v

ebl <- EBest(nc.si p$0bserved,nc.si p$Expected)
unlist(attr(ebl, "parameters"))

v

a b
.1882643 1.0000000

o

v

nc.sidsmap$EB_mm <-ebi$estmm

v

library(DCluster)
res <- empbaysmooth(nc.sidsmap$0bserved,nc.sidsmap$Expected)
unlist(res(2:3])

v v

nu alpha
.630656 4.395646

-

> nc.sidsmap$EB_ml <- res$smthrr
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PRACTICAL#3:
Random-intercept Poisson Regression

Empirical Bayes Estimation in Stata and R

Empirical Bayes estimation with GLLAMM in Stata and R with
INLA(GLM)
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Disgression about ESTIMATION

Freguentist: Parameters are “the truth”

— Assume the school-specific deviations from the overall average are fixed

Empirical Bayes: Parameters have a distribution

— Assume school-specific deviations from the overall average come from a
normal distribution with mean and variance

— In Empirical Bayes: the mean and variance of the random effect
distribution are assumed fixed

Bayes: Parameters have a distribution

— Assume school-specific deviations from the overall pverage come from a
normal distribution with mean and variance

— InBayes: we specify prior distributions for the mean and variance of the
random effect distribution.

Miguel Angel Luque Fernandez

ibs. GRANADA
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Disgression about MODELLING

Digression on Statistical Models

+ A statistical model is an approximation to reality

* There is not a “correct” model;
— ( forget the holy grail )

« A model is a tool for asking a scientific question;
— ( screw-driver vs. sludge-hammer )

» A useful model combines the data with prior
information to address the question of interest.

« Many models are better than one.

Miguel Angel Luque Fernandez ibs. GRANADA 29 de noviembre de 2018 78 / 87



CONTENT: 6 Accounting for the Spatial Structure

BYM and INLA

Besag-York-Moille and Integrated Nested Laplace Aproximations Modeling
in R
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Accounting for the Spatial Strucure

Local Empirical Bayes Smoothing

Motivation

@ Neighbours are likely to have similar risks

@ PG and Marshall will produce the same results if the values are
permuted at random

o Topology of the map needs to be taken into account in some way

Marshall's local estimator (Marshall, 1991)

@ A spatial version was proposed considering that the neighbours have
equal mean and variance instead of the global mean and variance

@ The spatial smoothing is obtained because the shrinkage is done
towards the local mean
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Neighbhours Mesh Data Structure

Local Empirical Bayes Smoothing: CAR = BYM model

> neigh<-poly2nb(nc.sidsmap)

> plot(nc.sidsmap, border='gray")

> plot(neigh, coordinates(nc.sidsmap), pch="
>

", col="blue", add=TRUE)

y
Miguel Angel Luque Fernandez

ibs. GRANADA
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Neighbhours Mesh Data Structure

Local Empirical Bayes Smoothing: CAR = BYM model

BYM split the risk into 3 main effects: covariates, unstructured random
effects and spatial random effects

o~ Po(E;6;)
|0g(9,') = a-+ ,BX, —+ uj + Vi

uj ~ N(O7 0'5)

vi o~ N( JN' v,771’2)

fla) « 1
f(B) 1
O'L2, ~ Gafl(al,bl)
0'8 ~ Gail(az,bz)

Miguel Angel Luque Fernandez ibs. GRANADA 29 de noviembre de 2018



INLA Modelling

INLA

@ INLA stands for Integrated Nested Laplace Approximation

e Methodological approach described in Rue et al. (2009)
o Implemented in the INLA (sometimes called R-INLA) package

@ INLA computes an approximation to the marginal distribution of the
model parameters (i.e., f(#i|y)) instead of the full joint posterior

f(0ily)
e Uses computationally efficient algorithms for the computations
e VERY fast
@ Flexible model building using a formula

@ Call is done through inla()
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Empirical Bayes estimation in R

Empirical Bayes Smoothing

@ Spatial effects are included in the model formula using the £()
function

@ Some interesting models are shown in the table below

o Check http://www.r-inla.org for more details

Name in £() Model Regular grid
besag Intrinsic CAR No
besagproper Proper CAR No
bym Convolution model No
genericO = %Q71 No
genericl Y= %(I,, — ﬁC)71 No
rw2d 2-D random walk Yes
matern2d Matérn correlation Yes

Table: Summary of some latent models implemented in R-INLA for spatial
statistics (Bivand et al., 2014, submitted to JSS).

Miguel Angel Luque Fernandez ibs. GRANADA 29 de noviembre de 2018 84 / 87



PRACTICAL#4:

Empirical Bayesian estimation of CAR (BYM) usin INLA(Bessage) in R
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